How to create a
self-service data platform
with guarantees by
leveraging Avro schemas

Letgo Data Team

tuff @ -

" ey

Founded in 2015

Phenomenal growth
130 MM downloads

Focused on USA and
Turkey

Offices in Barcelona
and NY

Letgo Data Platform in numbers

500GB

Data daily

850M

Events Processed Daily

10K

Events Processed per Second

D

600+

Event Types

200TB

Storage (S3)

< I1sec

NRT Processing Time

T00 MUCH DATA TO/ANALYZE.

-

: \
WE NEED T0 GO DEEPER

Q

) Security by default
<3 Datensparsamkeit

Personally Identifiable Information

Right to be G

forgotten %
=

= governanc

Data

Pll:

Access *
policies
Y HH]
0] Jy3iy

User privacy rights

Right of access: we are required to provide to the users a copy of
their processed personal data upon request

Right to be forgotten: users have the right to request that personal
information be removed from our systems

We need to know:
o what information represents data related to users
o Wwhere the information of a specific user resides in the data lake

Identifying personal information in Domain Events

e The same field can have different names in different events
e Not all events contain a user_id, need to join with other events

Two user ids? No user id at all?

"data": {
"id":"00000-00000",
"type":"message sent",
"conversation id":"11111-11111",
"from user":"luke",

"data": {
"id":"00000-00000",
"type":"account updated",
"account id":"11111-11111",
"reason":"whatever",

"to_user":"han", "updated at":1566901277000
"content":"Hello!", } -

"sent _at": 1566901277000

T

Usability vs security

e Employees should only access sensible data that they need to
fulfill their business needs

e A Data Protection Officer (DPO) should ﬂb} :[.‘ S
explicitly allow access to sensible data

when applicable

High-level architecture

' DATA LAKE '
Defining principles: : T
e Self-service platform E © E
e Compliance to privacy laws | D | S TleraZero |
e Good development guarantees ! o et ~— \E\Q
e Minimal maintenance ! B I N O‘_J'_\
e Cost containment by design ! g e : R
. . l SCHEMA " B o o I
Main technologies: E REGISTRY " COVERNANCE | events ’:

per business unit

e Spark for data processing . J Y%
e Kafka and Kafka Connect for

data transport
e Avro for data governance

10

- =k

Apache Avro
. . "type'":"record",

e Serialization protocol "namespace" : "com. letgo",
e Schema-based "name" :"ProductVisited",

: "fields":
e Binary Te st:l

o Fast parsing! "name":"user id",

o Compact "type":"string",

o Tools toinspect:("doc":"Id of the visiting user",
e Polyglot: java, scala, s, python... 1
e Enforces structure of events "name" : "product id",
e Evolvable schemas! "type":"string",

. . cp ey "doc":"Id of the visited product",
e Tip:aim for full compatibility

I
when evolving schemas

SCHEMA EVOLUTIO

DO’S

Make your
primary key required

Have default values for
anything that can be removed

New fields MUST have
default values

et

Apache Avro - tagging PIl fields

Out of the box schemas enforce
name and type of fields, but don't
hold metadata about the business
context

Need a way to know what each field
represents...

I

"type" . "record" ,
"name" :"ProductCreated",

"fields": |
{

"name" :
1] type 1] :

I

"name" :
1] type 1] :

"id" ,

"string"

"user id",
"string"

{

I

Apache Avro - tagging PIl fields ntype":"record",
"name" :"ProductCreated",
e Out of the box schemas enforce "fields": |
name and type of fields, but don't { . N
. name":"id",
hold metadata about the business "type":"string",
"letgo.properties": {
COnteXt . nentityn : "product/id" ,
e Need a way to know what each field "linked to": "user id"
represents... } }
e Solution: define custom tags to {
identify entities of interest! name: "user_ldt,

"type":"string",
"letgo.properties": {
"entity": "user/id",

}

14

Apache Kafka

P N

Distributed commit log open sourced by LinkedIn
Its creators founded Confluentic to provide commercial support
Kafka offers

o exactly-once delivery of events
o high-throughput (millions of events per second)
o high-reliability
How?
o for Kafka, payloads are just byte arrays
o NoO parsing, zero-copy optimizations
So, Kafka is blind regarding schemas and schema validation...

Kafka - Schema Registry

e Component developed by Confluentic (also OSS)
e Used at the edges of Kafka
e Enforces schema compatibility

validate schema Schema Registry retrieve schema

Producer / "~ Consumer
T Kafka —

events

id | binary data

PN 22

Kafka Connect

e Framework for connecting Kafka with external systems

o Source connectors for moving data into Kafka
o Sink connectors to move data out of Kafka

e Reliable, distributed, scalable, fault tolerant and low latency
Standardized way to move data around inside the Kafka ecosystem

without reinventing the wheel
|——é 3 Dota
Kmq(a &J

!

PR
Data —
Source =)

l

| Kelka Connedt |
| Ka“:a COKh?(t’;’

17

Ingestion platform architecture

e Raw events are ingested and validated with Kafka and connectors
e Cassandra table with TTL for data landing and deduplication

/Q‘) GitHub

letgo event schemas

Domain Events

{JSON} 1:> & Kafka

-

{ Kafka Connect

=) STE

cassandra

19

Gatekeeper

e Kafka connector sink that validates raw events based on schemas

from the Schema Registry

e Publishes valid events serialized as Avro to valid Kafka topics

Schema

Registry

[§€ event-raw-* J II(>

-

l

Gatekeeper

#

ﬂ [§€ event-valid-*]
% [§2 dead-letter-*]

20

Deduper

e Kafka connector sink that lands valid Avro events into Cassandra
e Duplicated events hit the same partition key and get stored only once

Schema Partition key: year, month, day, hour, minute
Registry l Sort key: event_type, event_id

S Deduper ¢
[& event-valid-* | :> & [:=> %
\ cassandra

[§€ partitions-to-process}

21

Ingestion platform review - the whole picture

Schema
Registry |

_/
A

v

v

© GitHub

letgo event schemas

A

\ 4

/" Kafka
Connect
(\ .| Deduper
| A
Domain Events §g i “
{JSON} kafka
Reverse
W\ .| event-raw-* | ndexer
Connect \]—l @l | l
- Y Relati
J ->[event-valid-* J__l Y n::p:)er:s
Gatekeeper > =y
A ﬁ :{ dead-letter-* }
Ingestion
| Metrics
2 ->[retries]—| d
J =

v

o

cassandra

DynamoDB

DynamoDB

L

CloudWatch

22

i -

Data Lake architecture

e Events are loaded from Cassandra, deserialized and dumped to S3
Tier Zero (no access)
e Then they are copied to anonymized Tier One reservoirs with TTL

Data Pump Tier Zero Data Pump Tier One
Tier Zero Bucket Tier One Reservoirs
%1 :{>Spor‘ll<\z —> * —> Sporl(—>| ** *
cassandra
T (raw events) T (anonymlzed events)

Schema G Data
Registry oveDrgance

24

Data Pump Tier Zero

e Livesin aseparate isolated account that nobody can access
e Partitions automatically reprocessed if late events appear

o {JSON}
1
Data Pump : v Parquet
Tier Zero ! add-new- partltlon -tier0
L) pl o=
]
1
|
T 1 ------ [§3 partitions- processed]

Schema Registry

25

Data Pump Tier One

e New data is loaded from tier zero and sent to different “reservoirs”
e FEach reservoir is anonymized as per data governance rules

! ‘
itions- 1 aAMmMazon g xracus dd- rtition-tier1
[§€ partitions processed] | . EMR SporK * oa -new-partition-tier

Data Pump
* o add-new-partition-tier1
1
Tier Zero 1
1

Tier One
(parquet events) A -7 M Data Science
S 4 _____ . .

Data Governance DB

26

Data catalog

e \When data arrives to S3 it's not yet visible in queries

e Alambda istriggered when a new object appears in S3 registering
the new partition in the Glue Catalog

e |f a partition is recomputed in tier zero, the change is propagated
automatically to all reservoirs

add-new-partition-tier1 Il . n
Al > .
N

Tier One Glue
Reservoir Data Catalog

27

Data governance rules

Rules defined for fields, tags, tables and/or reservoirs (in this order
or priority)
Possible actions for table columns:
o SHOW: the column values are left as they are
o HASH: the column values are anonymized through a hash
function
o DROP: the column is removed from the table
Default action: DROP all fields tagged as Pl
Ul to request access which must be approved by DPO

Data Access Policies

e Employees can only access their own anonymized reservoir
e |AM roles for authentication and authorization

_— Data Science ' - IAM Role data-science-role

I
BI
Trust&safety' - IAM Role tns-role

- IAM Role bi-role

29

Access & Delete

Ingestion platform architecture (again)

‘) GitHub

letgo event schemas

A

/" Kafka
Connect
(\ .| Deduper 5
| am N s
Domain Events % > “ >
{JSON}] kafka cassandrg
/ﬁ Reverse
c';:;k:ct ;[event-raw-* J—‘ '“5;"9’ N
UJ DynamoDB
e s x | Relations
v —>{ event-valid-* | Mapper
Gatekeeper o ° B
— =[dead-letter-* } DynamoDB
Ingestion
Metrics .
T +[retries }—l > ' v
J \) CloudWatch

31

Reverse indexer

e Kafka connector sink that indexes partitions relevant to each entity
e Example: “lookup all Data Lake partitions containing events for user

l/uke1"

Schema
Registry l

Reverse

E eent-lid-*] :(> '“d@xe’

Partition key: entity
Sort key: partition

2

-8

DynamoDB

32

Relations mapper

e Kafka connector sink that stores relations between entities
e Allows to build a graph of relations among entities
e Example: “lookup all products, payments, etc. connected to user ‘luke™

Schema Partition key: from_entity
Registry l Sort key: to_entity

.

Relations

(& nt-lid-*] —> Mﬁr —> .

DynamoDB

33

Identifying user’s data in the Data Lake

e |t'slike finding the needle in the haystack...
e Avoid full scan with an inverted index and a map of relations

7
7’

product x, product y
relations_map

| product x, product y

—>
user luke,

€
2019-08-25 10:10

2019-08-25 12:50 reverse_index
2019-08-27 20:30

34

Access job

e Load relevant partitions for a batch of requests and save data
of interest in a zip file for each one
e Ephemeral EMR cluster for ad-hoc computation

relations_map +
reverse_index

userld=luke/bundle.zip
userld=han/bundle.zip

Access bucket

Tier Zero
(parquet events)

[§8 access—request-processed]

Schema Registry

85

Delete job

e Recomputes relevant partitions removing/anonymizing data
e A copy is created in a separate bucket for law enforcement agencies

relations_map +
reverse_index

* o add-new-partition-tier0
—

Tier Zero

Schema Registry

36

