
1

How to create a
self-service data platform
with guarantees by
leveraging Avro schemas

 Letgo Data Team

2

3
Founded in 2015

Phenomenal growth
130 MM downloads

Focused on USA and
Turkey

Offices in Barcelona
and NY

3

Letgo Data Platform in numbers

4

Challenges

55

6

User privacy rights

● Right of access: we are required to provide to the users a copy of
their processed personal data upon request

● Right to be forgotten: users have the right to request that personal
information be removed from our systems

● We need to know:
○ what information represents data related to users
○ where the information of a specific user resides in the data lake

7

Identifying personal information in Domain Events

"data":{
 "id":"00000-00000",
 "type":"message_sent",
 "conversation_id":"11111-11111",
 "from_user":"luke",
 "to_user":"han",
 "content":"Hello!",
 "sent_at": 1566901277000
}

"data":{
 "id":"00000-00000",
 "type":"account_updated" ,
 "account_id":"11111-11111",
 "reason":"whatever",
 "updated_at":1566901277000
}

Two user ids? No user id at all?

● The same field can have different names in different events
● Not all events contain a user_id, need to join with other events

8

Usability vs security
● Employees should only access sensible data that they need to

fulfill their business needs
● A Data Protection Officer (DPO) should

explicitly allow access to sensible data
when applicable

9

Architecture Overview

10

High-level architecture

Defining principles:
● Self-service platform
● Compliance to privacy laws
● Good development guarantees
● Minimal maintenance
● Cost containment by design

Main technologies:
● Spark for data processing
● Kafka and Kafka Connect for

data transport
● Avro for data governance

11

Apache Avro

● Serialization protocol
● Schema-based
● Binary

○ Fast parsing!
○ Compact
○ Tools to inspect :(

● Polyglot: java, scala, js, python...
● Enforces structure of events
● Evolvable schemas!
● Tip: aim for full compatibility

when evolving schemas

{
 "type":"record",
 "namespace":"com.letgo",
 "name":"ProductVisited",
 "fields":[
 {
 "name":"user_id",
 "type":"string",
 "doc":"Id of the visiting user",
 },
 {
 "name":"product_id",
 "type":"string",
 "doc":"Id of the visited product",
 },
 ...
]
}

12

Apache Avro - tagging PII fields

13

{
 "type":"record",
 "name":"ProductCreated",
 "fields":[
 {
 "name":"id",
 "type":"string"
 },
 {
 "name":"user_id",
 "type":"string"
 }
]
}

● Out of the box schemas enforce
name and type of fields, but don’t
hold metadata about the business
context

● Need a way to know what each field
represents...

Apache Avro - tagging PII fields

14

{
 "type":"record",
 "name":"ProductCreated",
 "fields":[
 {
 "name":"id",
 "type":"string",
 "letgo.properties": {
 "entity": "product/id",
 "linked_to": "user_id"
 }
 },
 {
 "name":"user_id",
 "type":"string",
 "letgo.properties": {
 "entity": "user/id",
 }
 }
]
}

● Out of the box schemas enforce
name and type of fields, but don’t
hold metadata about the business
context

● Need a way to know what each field
represents…

● Solution: define custom tags to
identify entities of interest!

15

Apache Kafka

● Distributed commit log open sourced by LinkedIn
● Its creators founded Confluentic to provide commercial support
● Kafka offers

○ exactly-once delivery of events
○ high-throughput (millions of events per second)
○ high-reliability

● How?
○ for Kafka, payloads are just byte arrays
○ no parsing, zero-copy optimizations

● So, Kafka is blind regarding schemas and schema validation…

Kafka - Schema Registry

16

● Component developed by Confluentic (also OSS)
● Used at the edges of Kafka
● Enforces schema compatibility

16

validate schema

binary dataid
Kafka

Schema Registry

Producer Consumer

retrieve schema

events

17

Kafka Connect
● Framework for connecting Kafka with external systems

○ Source connectors for moving data into Kafka
○ Sink connectors to move data out of Kafka

● Reliable, distributed, scalable, fault tolerant and low latency
● Standardized way to move data around inside the Kafka ecosystem

without reinventing the wheel

18

Ingestion Platform

19

Ingestion platform architecture

● Raw events are ingested and validated with Kafka and connectors
● Cassandra table with TTL for data landing and deduplication

20

Gatekeeper

● Kafka connector sink that validates raw events based on schemas
from the Schema Registry

● Publishes valid events serialized as Avro to valid Kafka topics

21

Deduper

● Kafka connector sink that lands valid Avro events into Cassandra
● Duplicated events hit the same partition key and get stored only once

22

Ingestion platform review - the whole picture

23

Data Lake

24

Data Lake architecture
● Events are loaded from Cassandra, deserialized and dumped to S3

Tier Zero (no access)
● Then they are copied to anonymized Tier One reservoirs with TTL

25

Data Pump Tier Zero

● Lives in a separate isolated account that nobody can access
● Partitions automatically reprocessed if late events appear

26

Data Pump Tier One

● New data is loaded from tier zero and sent to different “reservoirs”
● Each reservoir is anonymized as per data governance rules

27

Data catalog

● When data arrives to S3 it’s not yet visible in queries
● A lambda is triggered when a new object appears in S3 registering

the new partition in the Glue Catalog
● If a partition is recomputed in tier zero, the change is propagated

automatically to all reservoirs

28

Data governance rules

● Rules defined for fields, tags, tables and/or reservoirs (in this order
or priority)

● Possible actions for table columns:
○ SHOW: the column values are left as they are
○ HASH: the column values are anonymized through a hash

function
○ DROP: the column is removed from the table

● Default action: DROP all fields tagged as PII
● UI to request access which must be approved by DPO

29

Data Access Policies

Data Science

BI

Trust & safety

IAM Role data-science-role

IAM Role bi-role

IAM Role tns-role

● Employees can only access their own anonymized reservoir
● IAM roles for authentication and authorization

30

Access & Delete

31

Ingestion platform architecture (again)

32

Reverse indexer

● Kafka connector sink that indexes partitions relevant to each entity
● Example: “lookup all Data Lake partitions containing events for user

‘luke’”

33

Relations mapper

● Kafka connector sink that stores relations between entities
● Allows to build a graph of relations among entities
● Example: “lookup all products, payments, etc. connected to user ‘luke’”

34

Identifying user’s data in the Data Lake
● It’s like finding the needle in the haystack...
● Avoid full scan with an inverted index and a map of relations

35

Access job
● Load relevant partitions for a batch of requests and save data

of interest in a zip file for each one
● Ephemeral EMR cluster for ad-hoc computation

36

Delete job
● Recomputes relevant partitions removing/anonymizing data
● A copy is created in a separate bucket for law enforcement agencies

Questions?

